Package: POPInf 1.0.0

Jiacheng Miao

POPInf: Assumption-Lean and Data-Adaptive Post-Prediction Inference

Implementation of assumption-lean and data-adaptive post-prediction inference (POPInf), for valid and efficient statistical inference based on data predicted by machine learning. See Miao, Miao, Wu, Zhao, and Lu (2023) <arxiv:2311.14220>.

Authors:Jiacheng Miao [aut, cre]

POPInf_1.0.0.tar.gz
POPInf_1.0.0.zip(r-4.5)POPInf_1.0.0.zip(r-4.4)POPInf_1.0.0.zip(r-4.3)
POPInf_1.0.0.tgz(r-4.4-any)POPInf_1.0.0.tgz(r-4.3-any)
POPInf_1.0.0.tar.gz(r-4.5-noble)POPInf_1.0.0.tar.gz(r-4.4-noble)
POPInf_1.0.0.tgz(r-4.4-emscripten)POPInf_1.0.0.tgz(r-4.3-emscripten)
POPInf.pdf |POPInf.html
POPInf/json (API)

# Install 'POPInf' in R:
install.packages('POPInf', repos = c('https://qlu-lab.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/qlu-lab/popinf/issues

On CRAN:

2.70 score 1 stars 281 downloads 12 exports 2 dependencies

Last updated 9 months agofrom:6177791fef. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKAug 19 2024
R-4.5-winNOTEAug 19 2024
R-4.5-linuxNOTEAug 19 2024
R-4.4-winNOTEAug 19 2024
R-4.4-macNOTEAug 19 2024
R-4.3-winNOTEAug 19 2024
R-4.3-macNOTEAug 19 2024

Exports:Aest_inilink_gradlink_Hessianmean_psimean_psi_popoptim_estoptim_weightspop_MpsiSigma_calsim_data

Dependencies:MASSrandomForest